

International Congress of Plant Pathology 2018 Boston, 02 August 2018

A Multipronged Approach for Aflatoxin Mitigation in Africa Centered on Biological Control

Ranajit Bandyopadhyay International Institute of Tropical Agriculture (IITA) Ibadan, Nigeria

DAILY NATION NEWS BUSINESS COUNTIES SPORTS BLOGS & OPINION LIFE & STYLE

Home / News

Alarm over 2.3m bags of bad maize in market

FRIDAY NOVEMBER 26 2010

🔰 f 8 in 🖨 🖂

	Watch One-Minute World News			
lews Front Page	Last Updated: Monday, 7 June, 2004, 21:14 GMT 22:14 UK			
	🔤 E-mail this to a friend 🗧 Printable version			
	Mouldy maize 'kills 80 Kenyans'			
77 🔌	About 80 people have now			
Africa	died of food poisoning in			
Americas	eastern Kenya after eating			
Asia-Pacific Europe	contaminated maize, EASTERN SOMALIA			
Middle East	officials say.			
South Asia	The military has been sent in to			
UK	distribute 10,000 bags of maize			
Business	to the drought-prone Makueni, Kitui, Mbeere and Thika			
Health	districts.			
Science &				
Environment Technology	According to Health Minister Charity Ngilu, 80% of locally available maize stocks are affected.			
Entertainment	available maize stocks are affected.			
Also in the news	"We are now withdrawing everything that is in the stores in			
*******	those areas," the minister said.			
Video and Audio	Mrs Ngilu, who chairs the National Disaster Management			
Programmes	committee, told the press about these decisions on Sunday.			
Have Your Say	Liver failure			
In Pictures				
Country Profiles	Maize, a staple food in Kenya, is milled into flour to make a			
Special Reports	porridge known as ugali.			
	it 💵 🥥 🛂 📴 🚣 🚍 🧲 🗾			

Importance of aflatoxins

Occurrence

40% of commodities in local markets exceed ML

Susceptible crops

Maize, groundnuts, sorghum, cottonseed, chili, millet, figs, melon seed, ginger, sesame, cassava, almond, pistachio...

History of aflatoxicosis outbreaks

Health impacts of aflatoxins in Africa

Countries	Subject	Sample	Aflatoxin levels: Incidence (Mean)	Reference
Benin Benin/Togo	Children (n=480) Children (n=200)	Blood Blood	99% (33 pg/mg) 98 – 100% (37 – 87 pg/mg)	Gong et al. 2003 Gong et al. 2004
Tanzania	Children (n=166) Children (n=166)	Blood Blood	84% (13 pg/mg) 99% (24 pg/mg)	Shirima et al. 2015

Countries	Findings (association)	Reference
Ghana/The Gambia	Exposure and immune suppression	Williams et al. (2004)
Ghana	Exposure and low-weight, still birth and pre-term babies	Shuaib et al. (2010b)
Tanzania	Exposure and reduced weight and height among breast fed infants under 6 months	Magoha et al. (2014)
Benin/ Togo	High aflatoxin levels and lower growth rates	Gong et al. (2004)

Country	HCC cases/year	Disability Adjusted Life Years (DALYs) lost	Cost in Million USD
Nigeria	7,761	100,900	380 - 3,174
Tanzania	3,333	96,600	25

aflatoxinpartnership.org

Economic impact of aflatoxin control in Senegal

Courtesy: World Bank

Compliance has economic incentives

\$4.1 million capital

15% recurring cost for

investment +

aflatoxin control

There are moral and economic reasons to address aflatoxins in Africa due to health, trade and food/nutritional security considerations

Problem starts in the field

Aflatoxin in Groundnut and Maize at Harvest, 2012, Nigeria

Aflatoxin (ppb)	Peanut (n = 188)	Maize (n = 241)			
Distribution (% samples)					
> 4	54	70			
> 10	41	52			
> 20	29	24			
Descriptive statistics (ppb)					
Minimum	< LOD	< LOD			
Maximum	3,487	838			
Mean	111	33			

And..... increases in store

Awareness, institutions and policy

Aspergillus, crops and biocontrol

Log aflatoxin ppb

1

0

Aflasafe composition

Non-treated field

Treated field

Aflatoxin reductions

More than 1,500 farmers' field trials in 4 countries

Treated vs non-treated

95%: **<4 ppb** 5%: **5 – 20 ppb** ^{vs} **>20, >100, >1,000 ppb**

In 2017, over 105,000 ha were protected with Aflasafe products

www.iita.org I www.cgiar.org

Biocontrol is a simple field intervention that effectively reduces aflatoxin contamination from farms until consumption

Aflasafe Manufacturing Plant, IITA, Nigeria

This Manufacturing Facility in IITA-Ibadan can supply aflasafe to treat 2 million ha annually

Status of Aflasafe development in Africa

Host-mediated control

- Resistance is the most preferred solution
- Major efforts to breed for resistance since the last 40 years
- Excellent progress made in identifying sources of resistance
- Proteomics, transcriptomics, marker research underway
- RNAi and transgenics provide extremely high resistance
- No farmer-acceptable resistant cultivar available, search continues
- Drought-tolerant adapted cultivars best bet

Thakare et al. 2017

Combining resistance and biocontrol

Aflatoxin (ppb) <u>at harvest</u> in Low-Aflatoxin Maize Lines With and Without Biocontrol Treatment

Combining resistance and biocontrol

Aflatoxin (ppb) <u>after poor storage</u> in Low-Aflatoxin Maize Lines With and Without Biocontrol Treatment

Grain drying devices

Interesting developments in grain drying, but no devices scaled up

GRAIN DRYING SOURCEBOOK Prepared by AflaSTOP: Storage and Drying for Aflatoxin Prevention March, 2016

Grain storage devices

PICS bags

GrainPro Super bag

rs) Metal silo

www.iita.org I www.cgiar.org

Comparison of storage devices

- All devices similarly well to suppress aflatoxin increase
- All devices have pros and cons
- Metal silos are durable, rat-proof, but high initial cost
- PICS bags most preferred. Low cost, locally produced and effective

Walker et al., 2018 AflaSTOP project

% increase from beginning to 6 months

Impact of maize postharvest practices

Postharvest practices evaluated

- Drying on mat/raised platform
- Hand sorting
- Moisture content testing
- Insecticides use
- De-hulling before milling

Randomized Control Trial, Tanzania

Source: Kamala et al., 2018, WMJ

Good postharvest practices reduce aflatoxins and fumonisins and improve health

Major postharvest loss prevention projects

BILL& MELINDA GATES foundation

AflaSTOP:

Drying and Storage for Aflatoxin Prevention

(Formerly the Post-Harvest Drying and Storage for Aflatoxin Prevention Project)

- Several effective pre- and postharvest technologies are available
- More work required on drying

Institutions

Different scale, type.....

- National Food Safety Committees
- Standard setting, implementation and control boards
- International agencies, e.g., CGIAR, FAO, WFP, GAFSP, STDF
- Regional Economic Communities
- National governments and research institutions
- NGOs, e.g., AGRA, GAIN
- Private sector including financing
- Partnership for Aflatoxin Control in Africa (PACA)

Health institutions less involved

Policies

In policy-makers agenda:

- Aflatoxin standards: MRLs and CODEX
- FAO codes of practices
- Food safety laws
- Policy briefs by East African Community (EAC)
- Aflatoxin Control Plan for ECOWAS, COMESA and EAC member states
- Mainstreaming aflatoxin mitigation in NAFSIPs

With intentions to implement

Training and communication material

Aflatoxin kills! Aflasafe protects your maize and groundnuts from this deadly poison

Management of Aflatoxins in Maize and Groundnuts in Kenya

A Farmers' Training Manual

Joseph Atshnkeng, Charity Mutegi, Alejandro Ortega-Baltran, Joao Augusto Adebowale Akande, Lamine A. Senghor, Titikyo Falade, Juliet Akello, Peter J. Cotty Ranajit Bandyopadhyay

⁹ABataxin interventions supported by the U.S.Agency for International Development through Feed the Future. Feed the Future is the U.S. Government's correctione global human and food security inlicities, and supports broad-based economic growth through

development with a focus on enabling smallholder formers to increase productivity of better, more nutritious foods. Learn more: www.feedthefuture.gov

Integrated Management

Cost-effective technologies require enablers for adoption and scale-up

Push elements:

- Pre-harvest and post-harvest technologies including testing
- Training farmers, transporters, traders, regulators, consumers
- Awareness entire range of value chain participants
- Advocacy regional, national, global
- Policies standards, harmonization, trade, regulations
- Institutions regulators, markets, quality assurance, agribusiness

Pull elements / incentives:

- Premium market food/feed processors, poultry/fish industry, export
- Public health home consumption; urban and rural markets; government procurement, Home-grown school feeding
- Pay for performance

National Innovation System for Adoption

www.iita.org I www.cgiar.org

Integrated Aflatoxin Management System

Impacts (2013-2017)

- 32 agribusinesses
- 49,500 farmers
- Farm size: 1.34 ha/farmer
- 63,000 ha maize grown

Productivity: 3.1 tons/ha compared to 1.5 tons/ha national average

Nestlé Grain Improvement Programme in Ghana (& Nigeria)

Why

- Improved quality and safety of raw materials used in our factories (*up to 50% of maize grains rejected at factory gate in 2007*)
- To use 100% of locally-sourced maize grains

Holistic approach to mycotoxins management in maize in the supply chain

Identify the risks

- Establish critical control limits
- Sampling & testing
- Reject non-compliant raw materials

Good Agricultural Practices

- Best variety selection
- Farmers training & technical support
- Post-harvest best practices
- Storage & transport best practices

Technology application

- Mycotoxin testing
- Biological control application
- Application mechanical cleaning & sorting

Establish specifications & critical controls

- 98% reduction in total aflatoxins in maize grains
- Large capacity & high throughput
- Variable sensitivity

OPTICAL SORTING

Can be used to sort both yellow and white maize grains

Significantly reduce & control the level of aflatoxins in the supply chain

Outcome & Social Benefits

- Significantly improved grain quality

 rejection at factory gate reduced to less than 4% by 2013
- Over 80,000 farmers trained in awareness of health risks due to mycotoxin contamination in food

- 150 communities trained in contamination prevention
- About 50% are women
- Reduced loss, increased yields and revenue for farmers
- Improved food safety at home

- More effort needed to create awareness
- Need to test innovations at scale to determine adoption potential
- Cost-benefit analysis of incremental stacking of technologies to better understand value of integrated management
- Opportunities for decontamination or alternate use of contaminated products required
- Work in value chain settings and partner with the private sector

Summary

- Aflatoxins are pervasive in Africa
- More efforts needed to translate knowledge into actions for benefitting African smallholders
- Biological control with other practices can dramatically reduce aflatoxin contamination and improve food safety and security
- Context-specific Institutional and policy innovations must support technology adoption
- Scale-up of sustainable models to commercialize aflatoxin biocontrol underway in Africa

Joint effort

www.iita.org | www.ogiar.org